
Collections for States 
A Pattern for Implementing Simple State Models over Collections of Objects 

Kevlin Henney 

kevlin@acm.org 

Context 

You are managing a collection of similar objects that have lifecycles with only a few distinct 
states. These objects are often operated on collectively with respect to the state they are in. 

Problem 

Objects, whose lifecycle and state is principally of interest to the object that manages them, may 
be modelled as individual state machines. However, in many ways the objects are independent of 
this state model, which is a view their manager has of them. 

What is a suitable model for the collected objects and their managing objects that emphasises and 
supports this independence? How is the responsibility for state representation and management 
divided between the collected objects and their managing objects? 

Example 

Consider an application that holds a number of graphical objects that may be manipulated by a 
user, such as a CAD tool or graphical editor. The general shape of this application follows from 
the WORKPIECES frame [Jackson1995]. The objects manipulated by the user are the workpieces, 
and these may be saved to some kind of persistent storage, e.g. some kind of database. These 
objects all share a simple lifecycle model, in addition to their type specific state: 

 

For such a simple state model we can assume that the use of the OBJECTS FOR STATES pattern 
[Gamma+1995] – where a class hierarchy is introduced to reflect the separate states and the 
behaviour associated with them – is inappropriate. Instead we can use a simpler flag based 
approach, representing state as an attribute. In C++ this would lead to the following code 
(presented inline for brevity): 

 
class workpiece 
{ 
public: 
    void save() 
    { 
        save_state(); 
        changed = false; 
    } 
    bool saved() const 
    { 

saved changed
any  state modifying action

save



        return !changed; 
    }     ... 
private: 
    virtual void save_state() = 0; 
    bool changed;     ... 
}; 
 

The save_state member function here acts as a TEMPLATE METHOD [Gamma+1995], and the 
associated C++ idiom of declaring the pure virtual function as private reinforces this. 

In an application, which acts as the manager for workpiece objects, saving all the changes 
since the last save could be implemented as follows (assuming a non-throwing save function): 

 
class application 
{ 
public: 
    void save_changes() 
    { 
        for(iterator current = workpieces.begin(); 
            current != workpieces.end(); 
            ++current) 
        { 
            if(!current->saved()) 
            { 
                current->save(); 
            } 
        } 
    }     ... 
private: 
    typedef std::list<workpiece *>::iterator iterator; 
    std::list<workpiece *> workpieces;     ... 
}; 
 

This suffers from a verbose control structure and an excessive amount of checking. We might try 
to simplify the application class logic with the following rearrangement of responsibilities: 

 
class workpiece 
{ 
public: 
    void save() 
    { 
        if(changed) 
        { 
            save_state(); 
            changed = false; 
        } 
    }     ... 
};  
class application 
{ 
public: 
    void save_changes() 
    { 
        for(iterator current = workpieces.begin(); 
            current != workpieces.end(); 
            ++current) 
        { 
            current->save(); 
        } 
    }     ... 
}; 
 



Here we have hidden the condition check to simplify usage. We could alternatively make better 
use of the algorithms in the C++ standard library, such as for_each, to abstract control flow. 
However, these refinements still fail to address the basic flaw, which is the brute-force linear 
search, query and act model. This is both cumbersome and inefficient, especially where many 
workpiece objects exist but only a small proportion are modified between saves. 

Forces 

For objects whose own behaviour changes substantially depending on their state in a lifecycle, the 
most direct implementation is for the object to be fully aware of its own state. This means that the 
object is self contained and includes all of the mechanism for its behaviour. It strengthens the 
coupling between the object and its lifecycle, and increases the footprint of the individual object. 

For simple state models, flag based solutions are attractive because they do not require much code 
structuring effort, although they may lead to simplistic code with a lot of repetition and explicit, 
hard wired control flow. With the OBJECTS FOR STATES [Gamma+1995] pattern selection is 
expressed through polymorphism and behaviour within a state is modelled and implemented 
cohesively. This supports less dependence between the object and its state model, but it can be 
complex in implementation and, for large state models, it is very easy to lose sight of the lifecycle 
model. State transition tables can be used to drive and increase the flexibility of either the flag-
based or the OBJECTS FOR STATES approach, or it may be used independently. In each of these 
cases the object is tied to a single, given lifecycle model. If the object's own behaviour is largely 
independent of its state in this model, and such state behaviour is largely governed by its 
application context, an internal representation of the lifecycle can increase the coupling within the 
object unnecessarily. 

If an object's lifecycle is managed externally, this increases the object's independence from the 
context of its application and simplifies its representation. However, this means that significant 
decisions about the object's behaviour are now taken outside that object. One of the benefits of 
flag variables, OBJECTS FOR STATES or state transition tables held within the object is that they 
make the state model explicit internally. Objects are fully aware of what state they are in and they 
can act appropriately when used outside the collective. Also, anyone examining the class can 
easily determine its objects possible lifecycles. 

Modelling the states explicitly within objects means that if the lifecycle model is modified, the 
class code must be modified. Thus lifecycles cannot easily be modified independently of the 
representation details of the class. 

With OBJECTS FOR STATES adding extra state dependent data is relatively simple: the class 
representing a particular state also defines any data that is relevant to objects in that state. For 
flag-based modelling or state transition tables the data must be held elsewhere, typically as 
redundant data within the stateful object. If the lifecycle is managed externally, extra state-
dependent data can introduce the same management burden, i.e. the manager must add additional 
context data to its collection entry, or potentially redundant data must be held within the object. 

With collections of objects in which objects in the same state receive uniform treatment, an 
internal state representation can lead to poor performance. All collected objects are traversed 
regardless of the state they are in, and a state-based decision is taken for each one: explicitly, in 
the case of flag variables; implicitly through polymorphic lookup, in the case of OBJECTS FOR 
STATES; implicitly through table lookup, in the case of state transition tables. In each case there is 
wasted effort associated with traversing all objects only to perform actions on a subset that 
depends on object state. External lifecycle management can support a conceptually more direct 
approach, which also has performance benefits. 



Solution 

Represent each state of interest by a separate collection that refers to all objects in that state. The 
manager object holds these state collections and is responsible for managing the lifecycle of the 
objects: when an object changes state, the manager ensures that it is moved from the collection 
representing the source state to the collection representing the target state. 

 

Resolution 

Applying this solution to our example leads to the following code structure: 
 
class workpiece 
{ 
public: 
    virtual void save() = 0;     ... 
};  
class application 
{ 
public: 
    void save_changes() 
    { 
        for(iterator current = changed.begin(); 
            current != changed.end(); 
            ++current) 
        { 
            current->save(); 
        } 
        saved.merge(changed); 
    }     ... 
private: 
    typedef std::list<workpiece *>::iterator iterator; 
    std::list<workpiece *> saved, changed;     ... 
}; 
 

This is both significantly simpler and more efficient – in terms of traversal – than the previous 
attempts. The saved container refers to the objects that are unchanged and, when modified via 
the application, these are transferred to the changed container. As this is a pointer move it is 
cheap. To save all of the changed workpiece objects, the application object simply needs 
to run through the changed container saving each workpiece there, and then merge them 
back into the saved container. 

Common operation on objects in same state Collection representing state

Managed objectTransition of object between states



If we need to treat all of the objects collectively, regardless of state, it would be tedious to set up 
two loops to run through all of the objects – one for saved and one for changed – and so we 
can represent the superstate of saved and changed workpiece objects, i.e. all workpiece 
objects, with an additional container: 

 
class application 
{     ... 
    std::list<workpiece *> workpieces, saved, changed;     ... 
}; 
 

This acts as the boss container that holds all of the objects in a definitive order. It is used for state-
independent operations that apply to all the objects. The constraint governing container 
membership is that objects can only be present in one of the two state containers, but must be 
present in the boss container, and any object present in the boss container must be present in one 
of the state containers. 

In the context of this application, if unsaved objects are of interest because we can collectively 
save them, but saved objects are not operated on as a group, we can refactor to eliminate the use 
of the saved container: 

 
class application 
{ 
public: 
    void save_changes() 
    { 
        for(iterator current = changed.begin(); 
            current != changed.end(); 
            ++current) 
        { 
            current->save(); 
        } 
        saved.clear(); 
    } 
private:     ... 
    std::list<workpiece *> workpieces, changed;     ... 
}; 
 

Consequences 

By assigning collections to represent states we can now move all objects in a particular state into 
the relevant collection and perform actions on them as a group. Other than selecting the correct 
collection for the state, there is no other selection or traversal required. Thus this is both a cleaner 
expression of the model, as well as a more time-efficient one. 

An object's collection implicitly determines its state, and so there is no need to also represent the 
state internally. Because the objects are already being held collectively this can lead to a smaller 
footprint per object. This can be considered a benefit for resource-constrained environments, but 
need not be a necessary consequence of applying this pattern: the addition of back pointers from 
the object to its container or manager would counter this space saving. 

The manager object now has more responsibility and behaviour, and the managed object less. On 
the one hand this can lead to a more complex manager, on the other it means that the object 
lifecycle model can be changed independently of the class of the objects. The state model can be 
represented within the manager using OBJECTS FOR STATES, state transition tables, or explicit 
hardwired conditional code, as in the motivating example. The state management can become 
more complex if, in changing, the state model acquires significantly more states and therefore 
more collections to manage. 

Multiple state models can be used without affecting the class of the objects. For instance, we can 
introduce orthogonal state models for the objects in the motivating example based on their Z-



ordering, versioning or some other property, e.g. if they are active objects whether or not they are 
currently active. Where orthogonal lifecycles are involved, allocating separate managers for 
different state models simplifies the implementation: a single manager would become 
significantly more complex through acquisition of this extra responsibility. 

Where the manager acts as some kind of BROKER [Buschmann+1996] all communication with the 
objects will be routed through it and therefore the manager will be fully aware of what changes 
objects undergo. If objects can be acted on independently, state-changing events must not cause 
the manager to keep the wrong view, and so the manager would have to be notified. The 
notification collaboration can be implemented as a variation of the OBSERVER pattern 
[Gamma+1995], with the object either notifying the manager of a change or requesting a specific 
state transition of the manager. This would result in the object maintaining a back pointer to the 
manager, which would increase the complexity of the code and create a dependency on the 
manager, as well as increase the object's footprint. Referential integrity of this bidirectional 
relationship can be managed with MUTUAL REGISTRATION [Henney1997, Henney1999b] if the 
object is responsible for managing its own transitions or if the manager is not responsible for the 
object's lifetime. 

A bidirectional relationship can also arise if the object's own behaviour is not completely 
independent of the manager's view of it, and must therefore have some awareness of its own state. 
In this case an alternative is to also adopt some redundant internal state that acts as a cache. 

There are as many collections as there are states of interest in the lifecycle. This number includes 
superstates or a boss collection that holds all of the objects (notionally a superstate of all of the 
states for the objects, anyway). Thus this pattern can be applied recursively, and each superstate 
collection corresponds to the union of the corresponding substate collections. A boss collection is 
necessary where all of the objects need to be treated collectively, e.g. display or deletion, and 
iterating through many separate collections is inappropriate either because of convenience or 
because of ordering. The presence of a boss collection may obviate the need for one of the state 
collections, i.e. there are no collective operations performed in that state and the object is already 
accounted for in the boss collection. 

It is not as easy to accommodate additional state-dependent data for each object as the state is 
managed externally. Either the object must hold redundant state or it must be held along with the 
object's entry in the state container. This leads to an increase in code complexity and runtime 
footprint. For instance, in the motivating example we could hold additional data for saved objects 
indicating when they were last saved, or for changed objects to record when they were changed. 

Where the frequency of state change is high this pattern can become impractical, as the mediation 
of state change from one collection to another via a manager can come to dominate the execution 
time of the system. Internal representations have the benefit of immediacy when objects are acted 
upon individually and with frequent state changes. 

The COLLECTIONS FOR STATE pattern can be used in conjunction with other lifecycle 
implementations as an optimisation. For instance, in a library where each loan knows its due date, 
an explicit collection of overdue loans can be cached for quick access, rather than requiring a 
search over all loans for each enquiry. 

Discussion 

This pattern was originally documented as CONTEXT DETERMINES STATE [Henney1997]. 
COLLECTIONS FOR STATES is felt to be a more accurate name and follows the style of the OBJECTS 
FOR STATES [Gamma+1995] indicating some commonality of intent. Note that the name OBJECTS 
FOR STATES is used here in preference to its common name of STATE as this is both a more 
accurate description of its structure – STATE describes intent, whereas OBJECTS FOR STATES 
describes structure – and it does not give the reader the impression that this is the only solution 
style possible for object lifecycles, i.e. it is "a state pattern" not "the state pattern". 

In COLLECTIONS FOR STATES variation in state is expressed through collection objects rather than 
through polymorphic classes. In this and many other respects it is an inversion of the OBJECTS 
FOR STATE pattern, with state modelled extrinsically rather than intrinsically, i.e. the lifecycle is 
worn on the outside. It is focused on collections of objects rather than individual objects, and the 



entity–behaviour separation is in the opposite direction with behaviour managed by the collective 
rather than something within the individual. Such structural inversion illustrates that solutions to 
apparently similar problems, e.g. state management, need not be similar; radically different 
structures, where roles and responsibilities are almost reversed between the solution elements, can 
arise from particular differences in the context and problem statement [Henney1999a]. 

A set of decisions can guide developers to weigh up the use of this pattern, as opposed to or in 
conjunction with OBJECTS FOR STATES, state transition tables and flag-based approaches, 
suggesting that all these approaches can be related within a generative framework, i.e. a pattern 
language. Where independence and collective requirements dominate, COLLECTIONS FOR STATES 
proves to be a good match, leading to a better representation of the conceptual model and a 
simplification of object implementation. 

The author has used COLLECTIONS FOR STATES consciously and unconsciously in a number of 
systems and examples, including a server side application very similar in detail to the motivating 
example. However, there are many other examples of the COLLECTIONS FOR STATES pattern in 
practice, and from a diversity of domains. 

In systems programming and operating systems we find this pattern recurring: it is the strategy 
used in file systems for handling free versus used file blocks; it is used by many heap managers 
for holding free lists, especially debugging heap managers that track memory usage, i.e. free, used 
and freed; schedulers hold separate queues to schedule processes, which may be in various 
different states of readiness, e.g. running, ready to run or blocked. The theme of processing states 
can also be seen at a higher level in GUI systems supporting a comprehensive edit command 
history facility: once initially executed a command can be in one of two states, either done so that 
it can be undone or undone so it can be redone. In this case the collections used are quite specific, 
and must support stack-ordered (LIFO) access. An example of this can be seen in the COMMAND 
PROCESSOR pattern [Buschmann+1996]. 

COLLECTIONS FOR STATES is also a common strategy for denormalising a relational database. In a 
loaning library, a table representing overdue loans can be derived from the loans table. The low 
frequency of state change and the relative sizes of the collections make this external state model 
an efficient and easy to manage caching strategy, optimising lookup for queries concerning 
overdue books. 

We can also see a similar structure in action in the real world when people are grouped together 
because of some aspect of state, e.g. queuing at airports with respect to EU and non-EU passports. 

References 

[Buschmann+1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and 
Michael Stal, Pattern-Oriented Software Architecture: A System of Patterns, Wiley, 1996. 

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995. 

[Henney1997] Kevlin Henney, "Beyond the Gang of Four", Software Design Masterclass: 
Getting the Best out of Patterns, Unicom, 1997. 

[Henney1999a] Kevlin Henney, "Patterns Inside Out", OT '99, 1999. 

[Henney1999b] Kevlin Henney, "Mutual Registration: A Pattern for Ensuring Referential 
Integrity in Bidirectional Object Relationships", EuroPLoP '99, 1999. 

[Jackson1995] Michael Jackson, Software Requirements & Specifications: A Lexicon of Practice, 
Principles and Prejudices, Addison-Wesley, 1995. 

Acknowledgements 

I would like to thank Paul Dyson for his sound shepherding, careful comments and illuminating 
insights, Charles Weir for his observations and additional comments, and Frank Buschmann and 
the rest of the POSA team at Siemens for their valuable pre-EuroPLoP workshopping of this 
paper. 


