
28 May 2000

IF I WERE TO SAY that C++ is a language with a large number
of features, it is unlikely that I would be in much danger of
igniting a flame war. Where fact gives way to opinion—and
sometimes to the holiest and most heated of wars—is in the

recommendation of how to work with these features. What is their
purpose? What concepts do they express? In short, what methods
give sense to the mechanisms, elevating the programmer's view
of the language from a shopping list of features to recipes that
marshal features into designs? Sure, programmers need knowledge
of syntax and semantics to make any headway with the language,
but this learning curve quickly levels out to a plateau with the sheer
face of design rising above it.

Idioms offer a steady and complementary companion route—
patterns that capture an understanding of problem and solution
married together at the level of the language.1,2 Idioms establish
a vocabulary for communicating and formulating design, where
"design is the activity of aligning the structure of the application
analysis with the available structures of the solution domain."3

On the other hand, while practices based on accepted wisdom
generate comfortable habits that generally simplify day-to-day de-
velopment, this is no reason to be complacent. Occasionally re-
visiting old maxims can reveal other useful insights that were
hiding in the shadows.4

IS-A IS NOT ENOUGH Attractive as the idea first seems, the Eng-
lish language does not offer consistently useful guidance for the
analysis of problems and the statement of software structure.
Excitement about nouns as objects and verbs as methods often
wears off when the nouning of verbs and verbing of nouns is rec-
ognized as common usage.

So it is with the common good practice recommendation
guiding the use of public inheritance: that it should model an is-
a relationship rather than ad hoc code reuse. For example, a save
dialog is a dialog box and a list is a sequence, whereas a bounded
list is not an unbounded list and vice versa. The view is that
reuse-(over)driven approaches lead to the kind of spaghetti in-
heritance hierarchies that give inheritance a bad name, and the
is-a approach constrains inheritance hierarchies to more closely
model expected classifications.

However, like all analogies, it has a breaking point beyond
which rhyme and reason denatures to protracted theological de-
bate around the coffee machine. For instance, Rex is a dog, and
although his owner might regard him in a class of his own, it is
more likely that developers would view this as an instance-of re-
lationship. Preferring is-a-kind-of to is-a steers us clear of many
of the vagaries of natural language, but not so clear that it clari-
fies how state models are inherited or how a virtual function
should be overridden. For example, can a function that in the base
class is guaranteed to accommodate null pointer arguments and
never return a null pointer be sensibly overridden to accept only
non-null arguments and return null pointers? The linguistic view
does not provide a useful map through such territory.

Liskov Substitution Principle The Liskov Substitution Principle
(LSP)1,5 is often cited as giving more detailed guidance on the use
of inheritance. It makes a clear separation between type—
described in terms of the behavior of operations—and class—the
realization of the behavior in programmatic detail. LSP then es-
tablishes the criteria for subtyping relationships in terms of con-
formant behavior5:

A type hierarchy is composed of subtypes and supertypes.

The intuitive idea of a subtype is one whose objects provide

all the behavior of objects of another type (the supertype) plus

something extra. What is wanted here is something like the

following substitution property: If for each object o1 of type S

there is an object o2 of type T such that for all programs P de-

fined in terms of T, the behavior of P is unchanged when o1

is substituted for o2, then S is a subtype of T.

So, in answer to the previous question: No, a function cannot sen-
sibly be overridden to strengthen the requirements on its arguments
and weaken the requirements on its return type. This same rec-
ommendation can be found echoed in Design by Contract.6

Polymorphic Polymorphism LSP is normally presented as an in-
heritance guideline, but taking a step back we can see that it need
not be so narrow: It is a relationship about types, not implemen-

Kevlin Henney is an
independent con-

sultant and trainer
based in the UK. He
may be contacted at

kevlin@curbralan.com.

FROM MECHANISM TO METHOD

Substitutability

29

tations—i.e., subtyping, not subclassing. LSP relies on polymor-
phism; the concept of structural relationships, such as public in-
heritance, need not enter into it.

C++ developers have “inherited” from other OO languages
and literature the notion that polymorphism concerns only in-
heritance and virtual functions. Deserving of its name, polymor-
phism manifests itself in many forms (see Table 1). This
classification7 gives us a broader and more liberated view of type
relationships. Constraining C++ solely to OO usage ignores its
other strengths and denies its multiparadigm nature.

TYPES OF SUBSTITUTABILITY Substitutability is the property that
different elements have if they are grouped—and then treated—
in terms of their commonality; variations that are not relevant to
their use are not a part of this abstraction, or rather they do not
dominate.3 Building on the previous discussion allows us to think
outside the box, giving a broader view of substitutability grounded
in C++'s mechanisms (see Table 2).

The substitutability types are neither perfect peers nor perfectly
hierarchical; they overlap and build on each other. Nonetheless
they offer a useful way to understand and reason about features.
There is a close correspondence between these substitutability types
and the polymorphism categories described in Table 1.

Conversions Conversions may be implicit or explicit, which places
them under the control of the compiler or developer, respec-
tively. Whether a conversion should be implicit or explicit is a mat-
ter of taste, safety, and requirement. Widening conversions—from
a specific to a general type—are always safe and can be implicit
without offending sensibilities or the compiler, e.g., int to double
or derived to base. Narrowing conversions—from a general to a
specific type—are not guaranteed to be safe and should be explicit.

One would hope that narrowing conversions would be re-
quired to be explicit, but this is not always the case, e.g., double to
int. Even though the compiler does not require it, one might ar-
gue that taste does. Where possible, narrowing conversions should
be checked, e.g., the use of dynamic_cast to go from base to derived.

Developers need to consider the interoperability of new and
existing types. Particularly for value types—i.e., for fine-grained
objects such as strings, which express quantities, rather than

persistent or strongly behavioral objects—the use of conver-
sions to and from other types makes more sense than the use of
inheritance relationships.

A single argument constructor is also, by default, a converting
constructor. Where a type may be safely, sensibly, and easily used
in place of another type, an implicit conversion into that type ei-
ther by a converting constructor or a user-defined conversion
(UDC) operator may be justified, e.g., use of const char * in many
places that a string may be used:

class string
{
public:

string(const char *);
...

};

class file
{
public:

explicit file(const string &);
...

};
...
const char *const log_name = getenv(“LOGFILENAME”);
file log(log_name ? log_name : “default.log”);

Otherwise—and this applies especially to UDCs—single argu-
ment constructors should be declared explicit and UDCs left un-
written, e.g., a string may not be sensibly used in most of the
places a file object is expected, nor may a string always be used safely
where a const char * is expected:

class string
{
public:

...
operator const char *() const; // questionable
...

};
string operator+(const string &, const string &);
...
const string log_suffix = “.log”;
const char *const log_name = getenv(“LOGBASENAME”) + log_suffix;
file log(log_name);

Overloading Overloading is based on the idea that a common
name implies a common purpose, which frees programmers from
indulging in their own name-mangling to differentiate similar
functions (this is the job of the compiler). Overloading works

C++ Report ∫ http://www.creport.com

Table 2. Different kinds of substitutability in C++.

Substitutability Mechanisms
Conversions Implicit and explicit conversions
Overloading Overloaded functions and operators,

often in combination with conversions
Derivation Inheritance
Mutability Qualification (typically const) and the

use of conversions, overloading, and derivation
Genericity Templates and the use of conversions,

overloading, derivation, and mutability

Table 1. Different kinds of polymorphism.

Polymorphism Description
Inclusion Conventional OO model of polymorphism,

i.e., virtual functions
Parametric Based on provision or deduction of extra type

information that determines the types used in
a function, i.e., templates

Overloading Based on the use of the same name denoting
different functions, with selection based on the
context of use, i.e., argument number and type

Coercion Based on the conversion of an object of one
type to an object of another type based on its
context of use

FROM MECHANISM TO METHOD

30

closely with—and sometimes against—conversions. Developers
are cautioned to keep any eye open for any such interference.

Operators provide a predefined set of names and definitions, and
therefore expectations: Overloading operator-> suggests the smart
pointer idiom, and overloading operator() suggests the function ob-
ject idiom. Although compilers do not run through code checking it
for stylistic content (e.g., use of meaningful variable names, sensible
use of overloading, and conformant use of inheritance) these con-
ventions derive from the language itself to establish a common frame
for working with the language “when in doubt, do as the ints do.”8

Extension through overloading forms an important part of oper-
ator overloading–based substitutability. For instance, a class that is oth-
erwise closed to change can apparently be extended to work within a
framework, e.g., “extending” iostreams to understand new types.

Some extension is less transparent, but it is important that it
follow as much of the base form as possible. An obvious example
is the use of placement new operators, which, in spite of taking
additional arguments, have the same purpose and much of the
same form as the vanilla new. Tagged overloads, such as
new(std::nothrow), provide a means of compile-time selection that
is a compromise between operators and named functions.

Derivation Substitutability with respect to derivation is perhaps
the most familiar category for programmers coming to C++ with
a conventional OO angle. A public class interface establishes a be-
havioral contract that the user relies on; derivation through pub-
lic inheritance tells the compiler that the types are interchangeable,
which only makes sense if the derived class developer promises to
still fulfill the contract, even if it is extended in some way. Drop-
ping LSP can lead to surprising behavior.

In terms of coupling, derivation is also the strongest relation-
ship one can have in a C++ system: It defines a dependency that
is strongly physical, e.g., with respect to #include, as well as one
that is strongly logical. The combined effect can lead to a tsunami-
like recompilation of a whole system, rather than a gentle ripple
effect, whenever the slightest change is made. Although C++ does
not clearly separate the concepts of subtyping and subclassing in
its inheritance mechanism, it is possible to effect this with inter-
face classes,9 i.e., abstract classes containing only pure virtual func-
tions. This offers a vehicle for substitutability independent of
representation issues. Interestingly, this means that as a mecha-
nism, inheritance may be used to either significantly increase or
significantly decrease the coupling in a system.

Mutability Mutability is concerned with the effects of change. For
objects in C++ this means qualification: const and volatile. ...Well,
const if we are being really honest with ourselves. From this per-
spective every class has two public interfaces: the interface for
const qualified objects and the interface for non-const qualified
objects. The const interface is effectively a subset of the non-const
interface, and therefore a non-const object may be used wherever
a const one is expected; i.e., the qualified interface may be con-
sidered a supertype of the unqualified one. Note that the subtyp-
ing relationship need not be strict: Overloaded functions differing
only in const or non-const will be selected according to the call-

ing const-ness. In OO terms this can be considered a form of
compile-time overriding of the const function by the non-const
variant, typically to return something more specific:

class string
{
public:

char operator[](size_t) const;
char &operator[](size_t); // 'overrides' const version
...

};
...
const string read_only = ...;
cout << read_only[0];
string read_write = ...;
cin >> read_write[0];
cout << read_write[0];

Genericity Templates offer a route to substitutability that grows
out of the basic concept of overloading. A templated function can
be considered to have a potentially infinite number of overloads
all sharing a common name, purpose, and structure, but differ-
ing in their parameter types. A similar view can be extended to
template classes, and from there, to member templates.

Generic programming, as typified by the part of the standard
library derived from the STL, is based on the compile-time poly-
morphism of C++ templates, as well as the concepts and mecha-
nisms of the other substitutability categories.

CONCLUSION Substitutability provides a useful way to structure
a system's meaning. It can be recognized as reaching further than
a commonplace recommendation for inheritance, drawing to-
gether many C++ features in a set of practices that make sense of
mechanism.

Future columns will explore the different types of substi-
tutability in greater detail, looking at language features and their
use in idioms, and highlighting the practices that commonly (or
uncommonly) appear in application and library code. ˘

References
1. Coplien, J. Advanced C++: Programming Styles and Idioms,

Addison–Wesley, Reading, MA, 1992.

2. Coplien, J. Software Patterns, SIGS, New York, 1996.

3. Coplien, J. Multi-Paradigm Design for C++, Addison–Wesley,
Reading, MA, 1999.

4. Henney, K. “Creating Stable Assignments,” C++ Report, 10(6):
25–30, June 1998.

5. Liskov, B. “Data Abstraction and Hierarchy,” OOPSLA '87

Addendum to the Proceedings, Oct. 1987.

6. Meyer, B. Object-Oriented Software Construction, 2nd ed.,
Prentice–Hall, Englewood Cliffs, NJ, 1997.

7. Cardelli, L. and P. Wegner. “On Understanding Types, Data
Abstraction, and Polymorphism,” Computing Surveys, 17(4):
471–522, Dec. 1985.

8. Meyers, S. More Effective C++: 35 New Ways to Improve Your

Programs and Designs, Addison–Wesley, Reading, MA, 1996.

9. Carroll, M. D. and M. A. Ellis. Designing and Coding Reusable

C++, Addison–Wesley, Reading, MA, 1995.

May 2000

