
6 4 Java™Report | F E B R U A R Y 2 0 0 0 ht t p : / / w w w. j ava re po r t . co m

WH AT IS AN object worth? For that
m a t t e r, what is a pattern worth? The
answer to both of these questions is:
not much. At least, not on their own.

Object-oriented (OO) systems work because the
behavior and i n f o rmation of the system is distrib-
uted across a network of connected objects, each
responsible for a particular part of the system's
behavior and/or information, their granularity rang-
ing from the large to the small. The re f e rences con-
necting objects together may be held for the lifetime
of an object, or for less than the duration of a method

call. In execution the
t h reads of control ripple
t h rough and affect this
n e t w o r k .

A similar thing can be
said of patterns: Patterns
do not exist in isolation
only solving individual
design problems at a sin-
gle level. Patterns can be
collected together for
common use, but more
powerfully they can be

connected together as a
p a t t e rn language to describe how to build a
p a rticular kind of system or resolve a family of
related pro b l e m s .

Putting Pat te rns in Their Pl a ce
The Gang of Four (GoF) catalog of design pattern s1 c o l-
lects a number of general purpose patterns for use in
OO design. However, it is certainly not the last word
on either patterns or design. Design embraces many
levels of detail in a system, from its gross arc h i t e c t u re
right down to the use of language features; design
must also relate to the purpose as well as the mecha-
nism of the system.

P a t t e rn-Oriented Software Arc h i t e c t u re (POSA)2

is another catalog that is in many ways GoF-like. One

way in which it goes further than GoF is in classify-
ing its patterns as belonging to one of three levels:
a rc h i t e c t u re, by which the gross arc h i t e c t u re is
meant; design, by which detailed design at the same
level of GoF is intended; and idioms, which focus on
p rogramming language-specific pattern s .

Id i o m s
As anyone who has studied a language at school only
to be left—literally— speechless when visiting some-
w h e re it is spoken natively will know, understanding
of any language goes beyond a by rote knowledge of
syntax and semantics. Fluency in a language is also
about embracing its idioms and expressing yourself
a p p ropriately in that language with intention, rather
than by accident or by dogma. This is as true of pro-
gramming languages as it is of natural languages, and
Java presents a context of mechanisms and common
practices for design to incorporate.

Many idioms can be seen to define conventions of
style, e.g., class and method naming conventions.
Others have a more direct relationship to pattern s .
W h e re patterns are considered to be solutions to
p roblems occurring in a context, many idioms are
language-level or technology-specific pattern s3; that
is, they have the language or technology as part of
their context.

Parts of Java's context that affects how design
decisions are taken include its strong typing, reflec-
tion, support for multithreading, garbage collection,
and reference-based objects. This context leads Java
developers down different routes than those taken
by either C++ or Smalltalk developers. For instance,
much of the detail describing C++ issues such as
memory management in Design Patterns1 is not rel-
evant in Java. At the same time, there are Java issues
of interest that are not explored. So, some idioms
may adapt general design patterns to fit in more
appropriately with the language, as was done with
the Design Patterns Smalltalk Companion,4 which
expresses and discusses the GoF patterns in a more
idiomatic form for Smalltalk programmers.

Idioms may also re p resent design decisions that
exist only in that language. Note that not all lan-

Patterns of Value

Kevlin Henney is a Principal Technologist with QA Training
in the UK.

Kevlin He n n ey / khenney@qatraining.comPatterns in Java

6 5h t t p : / / w w w. j ava re po r t . co m F E B R U A R Y 2 0 0 0 | Java™ Report

g u a g e - s p e c i fic conventions warrant the name pattern s .
For instance, the JavaBeans naming conventions—ge t *
and s e t *, etc.—are just that: naming conventions. They
d e fine framework participation rules, to support mean-
ingful introspection, for non-B e a n I n fo i m p l e m e n t e r s .
T h e re f o re, although idiomatic in one sense, they are not
p a t t e rns in the sense we are talking about. When the
authors of the JavaBeans specification called the naming
convention design patterns, they confused re g u l a r
e x p ression pattern matching with the more specific con-
cept of design pattern s .

Java idioms are being documented in a number of
places, including a growing body of tentative idioms on
the Wiki.5 In some cases the patterns have a more specif-
ic context than simply Java, for instance, dealing with
concurrency.6

Pat te rn La n g u a g e s
P a t t e rns often have relationships with other patterns. The
related patterns may be used to resolve problems in the
new context introduced by applying a particular pattern ,
or patterns may be used to support the development of a
p a rticular solution. For instance, It e ra to r is often support-
ed by the use of a Fac tory Me t ho d.1

P a t t e rns can be grouped together and collected in a
catalog to provide a useful knowledge source; a simple
s o f t w a re engineering handbook if you like, e.g., GoF
and POSA. There may be some documented re l a t i o n-
ships between the patterns in a catalog. However,
the value of patterns is more fully realized when con-
necting them together in the narrative framework of a
p a t t e rn language3:

A pattern language is a collection of patterns that
build on each other to generate a system. A pattern in
isolation solves an isolated design problem; a pattern
language builds a system. It is through pattern languages
that patterns achieve their fullest power.…A pattern lan-
guage should not be confused with a programming lan-
guage. A pattern language is a piece of literature that

describes an architecture, a design, a framework, or
other structure. It has structure, but not the same level
of formal stru c t u re that one finds in p rogramming
languages.

A pattern language re p resents a reasonable set of prac-
tices and decisions that need to be taken together to
resolve a particular design challenge. The re l a t i o n s h i p s
help the developer determine which patterns should be
applied and under what circumstances. The developer
works with a connected group of patterns rather than just
individual pattern s .

The idea of pattern languages originated with pattern s
in building arc h i t e c t u re7, but there are now many good
examples for software, for instance, in the P a t t e rn
Language of Program Design b o o k s .8 – 1 0 T h e re is even a pat-
t e rn language for writing pattern languages!1 1

Va l u e - Based Prog ra m m i n g
What kind of problem in Java needs the concerted col-
laboration of many patterns? There are many, but to give
you a simple and complete example that we can work
t h rough in this and the next column, let us consider the
issue of expressing and using values in Java. Examples
of value types include strings, integers, and intervals, as
well as semantically richer dates, money, and physical
quantities such as length, mass, and time. We often
think of objects as re p resenting the significant chunks of
a system; values, in effect, form the currency between
these chunks.

Id e nt i ty, St ate, and Be h av i o r
An object can be characterized by identity, state, and
behavior.12 Value objects have transparent identity, sig-
nificant state, and behavior directly related to the state.
Knowing the identity of an object means that you can
hold a reference to it. By transparent identity we mean
that a value object's identity is not important to the way
we use it, and one value object is substitutable for anoth-
er with the same state. An example of this is a string. Our

Figure 1. Pa t te rns and their successors for suppo rting value-based prog ramming in Java .

7 8

Patterns in Java / Kevlin He n n ey

WHOLE
VALUE

IMMUTABLE
VALUE

MUTABLE
COMPANION

VALUE
CLASS

CLASS FACTORY
METHOD

CLONEABLE
VALUE

ENUMARATION
VALUES

focus is on a string's content and its manipulation, and
not on the reference itself: Comparison of the content of
two strings is of interest, but comparison of their identi-
ty is less useful. In other words, common usage for String
is based on its overridden equals method and not on
the == operator.

S e rvice-based objects are another example where iden-
tity is incidental. However, for service objects behavior
and not state is the most important feature; often serv i c e
objects are stateless. Contrast this with entity objects, for
which both identity and state are signific a n t .

Values in Java
Except for the built-in types, such as i nt, Java curre n t l y
s u p p o rts only re f e rence-based objects. Interesting pro p o s-
als for language extension aside,1 3 it is not currently possi-
ble for developers to create their own types to follow the
same behavior as the built-ins. For instance, there is no
operator overloading in Java, except for the indirect re l a-
tionship between the + operator and the to S t r i ng m e t h o d ,
and passing by copy is supported only in the context of
remoting, specifically j a va . i o . S e r i a l i z a b le types under RMI.

Nonetheless, this does not remove the need for devel-

opers to create types that act as values. The idioms for
s u p p o rting fine-grained value types can be described
t h rough a pattern language.

A Pat te rn La n g u a g e
The pattern language for value-based programming in Java
that follows is a work in pro g ress. It is drawn from com-
mon Java practices as found in published code, including
the standard Java libraries. A summary and basic stru c t u re
of the language, followed by a simple example that
demonstrates its use, is shown this time. In the next col-
umn we will examine each of the patterns in more detail.

Ove rv i ew of the Pat te rn s
F i g u re 1 shows all of the patterns in the language. Lines
with arrows re p resent successor relationships, showing
how one pattern may be followed by another to support it
in some way; the detail of that support is found in the text
of the pattern itself.

An I m mu t a b le Va l u e, for example, avoids the side-eff e c t
p roblems that arise from sharing value objects between
objects, particularly across threads. However, it can be
costly and awkward, in terms of object creation, to only

6 6 Java™Report | F E B R U A R Y 2 0 0 0 ht t p : / / w w w. j ava re po r t . co m

Patterns in Java / Kevlin He n n ey

Name Problem Solution
Class Factory Me t ho d How can you simplify, and po te nt i a l ly Provide static methods to be used instead of (or

o p t i m i ze, co n s t ru ction of Value Class as well as) ord i n a ry co n s t ru cto r s.The methods

o b j e cts in ex p ressions without re t u rn either new ly cre ated Value Class o b j e ct s

re s o rting to int ru s i ve new ex p re s s i o n s ? or cached objects from a table.

C l o neable Va l u e How can you pass a Value Class o b j e ct Im p l e m e nt the C l o ne a b l e i nte rf a ce for the Value
i nto and out of methods without C l a s s and use a clone of the original wheneve r

a l l owing callers or called methods to it needs to be passed.

a f fe ct the original object ?

E nu me ra t ion Va l u e s How can you re p re s e nt a fixed set Each co n s t a nt is re p re s e nted by an I m mu t a b l e
of co n s t a nt values and pre s e rve Va l u e d e fined as a static final in the sco pe of the

ty pe safe ty ? I m mutable Va l u e c l a s s, which cannot be

i n s t a nt i ated outside the sco pe of that class.

I m mutable Va l u e How can you share Value Class Set the inte rnal state of the Value Class o b j e ct

o b j e cts and guara ntee no side- at co n s t ru ct i o n , and allow no subsequent

e f fe ct pro b l e m s ? m od i fications i.e. ,i m p l e m e nt only query method s.

Mutable Companio n How can you simplify co m p l ex Im p l e m e nt a companion class that suppo rts

co n s t ru ction of an I m mutable Va l u e? m od i fier methods and acts as a facto ry for

I m mutable Va l u e o b j e ct s.

Value Class How do you define a class to Ove rride the methods in O b j e c t whose action

re p re s e nt values in your sys te m ? should be re l ated to co nte nt and not ident i ty

(e. g. , e q ua l) , and implement S e r ia l i z a b l e. The

Value Class will be either an I m mutable Va l u e or a
C l o neable Va l u e. Simplify co n s t ru ction with a Class
Factory Me t ho d.

W hole Va l u e How can you re p re s e nt a pri m i t i ve Ex p ress the ty pe of the quant i ty as a Value Class.

domain quant i ty in your sys tem

without loss of meaning?

Table 1. Thumbnails for value-based programming patterns.

6 8 Java™Report | F E B R U A R Y 2 0 0 0 ht t p : / / w w w. j ava re po r t . co m

Patterns in Java / Kevlin He n n ey

work with I m mu t a b le Va l u e objects, and so it is often h e l p-
ful to provide a Mu t a b le Companion class for the
I m mu t a b le Va l u e class. In the standard Java library,
j a va . l a ng . S t r i ng B u f f e r is an I m mu t a b le Va l u e and j a va .
l a ng . S t r i ng B u f f e r is a Mu t a b le Companion.

Table 1 summarizes each of the patterns alphabetically
in what is commonly known as thumbnail form: The
name, essential problem, and brief solution are pre s e n t e d
without rationale or examples.

Putting the Pat te rns to Wo rk
A simple example can be used to illustrate the pattern lan-
guage in action. Consider the problem of re p re s e n t i n g
dates in an object system. The resulting code is shown in
Listing 1 (available online in the code section of
w w w. j a v a re p o rt . c o m) .

The W ho le Va l u e p a t t e rn ,1 4 also known as the Q u a nt i t y
p a t t e rn ,1 5 and Value Class p a t t e rn offer the entry points into
the pattern language. We can already guess that the best
way to re p resent dates in our systems is directly as objects,
hence the need for a class D a t e. The way in which D a t e
should be implemented is as a Value Class, which describes
what is involved in making its instances value-like.

A Date object is considered to be an Immutable Value16

to avoid problems arising from sharing a single Date
object among other objects. For instance, two objects
sharing a Date object expect that the value it represents
should remain unchanged. However, if one of the objects
modifies it, the other will also experience the change—a
person object holding a date of birth field may unexpect-
edly find its birthday moved! To simplify manipulation
of dates Mutable Companion , DateManipulator, is also pro-
vided. An alternative to this approach is to make Date a
Cloneable Value.

One issue that needs to be addressed is what field ord e r
should be used to initialize D a t e objects: YYYY/MM/DD,
D D / M M / Y Y Y Y, or MM/DD/YYYY? The joy of standard s
is that there are so many to choose from, but if we choose
one how do we enforce that choice? If i nt is used to re p re-
sent the year, the month, and the day, there is no type
checking to catch incorrect use of the other cases, e.g.,
given the following constru c t o r :

public class Date imple me nts Serializable
{
public Date(int ye a r, int mo nth, int day) ...
. . .

}

All of the following will compile:

Date right = new Date(ye a r, mo nth, day);
Date wro ng = new Date(day, mo nth, ye a r) ;
Date als o Wro ng = new Date(mo nth, day, ye a r) ;

Months can be conveniently represented as Enumeration
Values, also known as Typesafe Constant,17 which deals
with expressing fixed sets of constants (think enum in C
and C++). A year can be conveniently wrappered as a
Whole Value, making it a distinct type and therefore

checked by the type system. The Year class is intended
for use as part of a method's interface rather than as part
of an object's representation; it is at the interface that the
type safety is really needed. Given that Month and Year
are now checked, it is safe to leave the day in the month
as a plain int, although you may wish to make it a Whole
Value for consistency.

The Class Fac tory Me t ho d p a t t e rn generally support s
the Value Class p a t t e rn, making it easier to express new
objects in expressions, as in the case of Ye a r. The C l a s s
Fac tory Me t ho d p a t t e rn is a more specific variant of the
Fac tory Me t ho d1 p a t t e rn: Fac tory Me t ho d deals specific a l l y
with managing object creation in a class hierarc h y,
Class Fac tory Me t ho d focuses on providing an altern a t i v e
method of object creation to calling new with a
c o n s t ru c t o r.

Co n c l u s i o n
P a t t e rns are gregarious: They like company, and can work
well with other patterns to assist in design. The simple
issue resolved here, that of value-based programming in
Java, hopefully illustrates how a pattern language com-
bines patterns to work through a problem and support a
set of principles. Next time, we will look at each of the
p a t t e rns in greater detail. ■

Re fe re n ce s

1 . Gamma, E., et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison–We s l e y, 1995.

2 . Buschmann, F., et al., P a t t e rn-Oriented Software
A rc h i t e c t u re: A System of Pattern s, Wi l e y, 1996.

3 . Coplien, J., S o f t w a re Pattern s, SIGS, 1996.
4 . A l p e rt, S., Brown, K., Woolf, B., The Design Pattern s

Smalltalk Companion, Addison–We s l e y, 1998.
5 . Java Idioms, h t t p : / / c 2 . c o m / c g i / w i k i.
6 . Lea, D., C o n c u rrent Programming in Java: Design

Principles and Pattern s, Addison–We s l e y, 1999.
7 . A l e x a n d e r, C., et al., A Pattern Language: To w n s ,

Buildings, Constru c t i o n, Oxford University Press, 1977.
8 . Coplien, J. and D. Schmidt, Eds., P a t t e rn Languages of

P rogram Design, Addison–We s l e y, 1995.
9 . Vlissides, J., J. Coplien, and N. Kerth, Eds., P a t t e rn

Languages of Program Design 2, Addison–We s l e y, 1996.
1 0 . M a rtin, R., D. Riehle, and F. Buschmann, Eds., P a t t e rn

Languages of Program Design 3, Addison–We s l e y, 1998.
1 1 . M e s z a ros, G., Doble, J., "A Pattern Language for Wr i t i n g

P a t t e rn Writing," P L o P D 1 9 9 8.
1 2 . Booch, G., Object-Oriented Analysis and Design with

Applications, 2nd edition, Benjamin/Cummings, 1994.
1 3 . Gosling, J., "The Evolution of Numerical Computing in

Java," h t t p : / / j a v a . s u n . c o m / p e o p l e / j a g / F P. h t m l.
1 4 . Cunningham, W., "The CHECKS Pattern Language of

I n f o rmation Integrity," P L o P D 1 9 9 5.
1 5 . F o w l e r, M., Analysis Patterns: Reusable Object Models,

A d d i s o n – We s l e y, 1997.
1 6 . H e n n e y, K., "Java Patterns and Implementations,"

p resented at BCS OOPS Patterns Day, Oct. 1997,
p resentation notes and whitepaper,
t e c h l a n d . q a t r a i n i n g . c o m / p ro fil e . h t m .

1 7 . Wa rren, N., Bishop, P., Java in Practice: Design Styles
and Idioms for Effective Java, Addison–We s l e y, 1999.

