
APP DEV WORKSHOP

IT IS OFTEN SAID THAT GOOD DESIGN IS INVISIBLE.
What does this mean for something like an
interface, which is intentionally a highly visible

boundary separating different parts of a system?
Interfaces are about communication, both between
different components of the system and between
the code and the user. A well-designed interface is
typically concise, consistent and conventional.
Which all sounds a bit dull at first sight, but that
is, after all, what it means to be invisible: there is
little that is out of the ordinary and little to write
home about.

Given the significant role that interfaces play in
a system – whether we are talking about the
interface presented by a header file, a class’s public
section, the interface construct found in Java, C#,
IDL and other languages, a package’s public section
or even a whole API – the “principle of least
astonishment” is perhaps one of the most important
guidelines to follow:

● Concise: Interfaces that try to be helpful by
accommodating all possible needs in all possible
ways are particularly unhelpful and
unaccommodating. An interface should be
minimal, but not to the point of being cryptic.
The less there is to read, learn and remember,
the easier an interface will be to use.

● Consistent: An interface that is consistent in its
partitioning and naming is easier to anticipate
and offers fewer surprises than one that seems
to be designed in a fragmented and disconnected
fashion, following one style in one part of the
interface and another style in a different part of
the interface.

● Conventional: In selecting names, partitioning
method and class responsibility, and organising
argument lists and return values, follow established
practice where such practice is itself concise
and consistent – don’t invent new styles or
follow obscure ones unnecessarily, but don’t
slavishly follow common but poor forms. An
interface that follows the idioms of the language
and environment will be more readily grasped
than one that does not.

Nevertheless, being concise, consistent and
conventional is not quite as dull as it first appears:

it simply shifts the emphasis and effort of interface
design to more weighty matters, and away from
the trivial. The use of idioms (expressions and
phrasing specific to a cultural grouping) is in
contrast to the use of idiolects (affectations of
expression peculiar to an individual), wresting
responsibility for certain possible, arbitrary
variations away from interface designers, and
freeing them up to focus on other design issues.
The responsibility placed on the designer becomes
more one of judgement and breadth of knowledge
than one of invention.

Signature contracts
Interfaces play the role of contracts between
different parts of a system1, and there are many sides
to drawing up such a contract2. The appearance and
basic use of an interface constitutes a signature
contract: names, types and argument lists. Developers
familiar with the contract metaphor often overlook
contracts that are not functional contracts, and they
often assume that functional contracts are always
– and can always – be expressed using only pre- and
postconditions3.

Most generally, a contract is an agreement that is
binding and typically enforceable, with consequences
for any transgression. The use of assertions to
enforce correctness of usage and implementation allows
some contractual aspects to be expressed, but it does
not cover everything. In statically typed languages,
signature contracts tend to be enforced at compile
time: incorrect usage leads to a compilation error.
In dynamically typed languages, or via reflection,
signature contracts are checked at runtime:
transgressions are signalled by exceptions. When going
through weakly typed interfaces, such as via void *
in C, any requirements on a type that are not met
will lead to undefined behaviour – a laissez faire
enforcement policy with crashing consequences.

Style and idiom
Consider a simple sorting facility, along the lines
discussed in a previous column2. Narrowing the scope,
consider sorting an array or subarray of integers. What
would be the most idiomatic way of presenting this
facility in C?

void sort(int array[], size_t how_many);

APP DEV WORKSHOP

Defining an interface is more than just putting a front on an implementation.
Kevlin Henney looks into the intentional side of interface design

Form follows function

38 APPLICATION DEVELOPMENT ADVISOR ● www.appdevadvisor.co.uk

MARCH–APRIL 2004 39

And in C++?

void sort(int *begin, int *end);

And in Java?

...

public static void sort(int[] array, int from, int to) ...

...

In each case the operation is named sort and returns void. However,
in spite of the syntactic similarities between the languages, all other
details are different. Although it is sometimes possible to adopt
one language’s idiom in another, this often leads to an inappropriate
look and feel in the borrowing language. The style may work in
a technical sense – it compiles and runs – but it may not make the
best use of language features or communicate most effectively –
it is more idiolectic than idiomatic.

For example, although it is possible to adopt the C-style
signature for sort in C++, the native C++ approach for expressing
algorithms is based on iterator ranges, as used through the
Standard Template Library (STL). If the type of the underlying
container is generalised to allow any random-access sequence, not
just an array, or the type of the elements to be sorted can be anything
that can be ordered using the < operator, the sort function
generalises directly to the common function template appearance
of the STL algorithmic operations:

template<typename iterator>

void sort(iterator begin, iterator end);

Each of the suggested signatures reflects a similar set of
capabilities: the ability to take an array of integers and sort all or
part of it. In C the subrange is communicated by passing a
pointer to the starting element and the count of how many
elements after that should be considered, expressed as the
standard size_t type, used for denoting sizes, rather than a
plain int. This signature takes advantage of C’s close (sometimes
too close) relationship between pointers and arrays. By contrast,
C++’s notion of subrange is based on an iterator that points to
the beginning and one to the first element past the end of the
subrange.

Java does not allow pointer–array aliasing, so although its
signature is similar to the C version, it must name the base of the
array explicitly. Java then specifies the subrange using integer indices.
Like the C++ version, its range is half-open, i.e. the first index is
included in the range but the last is not. An alternative would have
been to specify the start followed by the number of elements to
be sorted rather than the start and the end indices. However, this
is not the convention in common use elsewhere in the Java
libraries, so although it has its own merits, those are not enough
to outweigh the use of the more idiomatic form.

In C and C++ the operation name is global and, in C++,
perhaps nested within a namespace. In Java there is no mechanism
for defining global operations, so sort needs to be defined in the
context of a utility class, which raises new questions. What
should be the granularity and scope of such a utility class? A class,
Sort, that holds only the single static sort method; a class, Sorting,
that holds sort and any related methods, such as an isSorted predicate;
a class, named something like ArrayUtilities, that holds sort and
other unrelated methods that operate on arrays. The first option
is too fine grained and offers no useful room for expansion, with
the exception of adding other sort overloads. The third option is

the one used by the Java Collections API, and should be avoided
as being little more than a coincidental and un-cohesive aggregation
of functionality. The second option is probably the wisest in
this case.

Useful, usable and recently used
There were few naming issues in considering the sorting facility:
sort was sufficiently concise and conventional. The stylistic
concerns were focused mainly on the argument list. Let’s take another
example that demonstrates a broader interface to a commonly used
facility, but one that is less frequently commoditised than sorting:
a recently used list.

Application menus often hold a list of the most recently opened
documents and modern phones normally hold a list of the most
recently dialled numbers. A recently used list is often bounded to
an upper capacity. The general behaviour is that of a dispenser type,
such as a stack or a priority queue, with the property that the most
recently inserted element is found at the front and that an
element occurs only once in the whole sequence, i.e. no element
is equal to any other element.

To keep things simple, rather than focus on holding arbitrary
objects that may be mutable and could undermine the uniqueness
invariant on the list, just consider the interface to a recently
used list that holds strings. What would this look like in Java?

interface RecentlyUsedList

{

boolean isEmpty();

int size();

int capacity();

void clear();

void push(String newHead);

String elementAt(int index);

...

}

This interface follows standard Java capitalisation conventions
and uses names found in the Java library. In the Java Collections
API the name isEmpty is favoured over the less commonly used
empty convention, which would be the appropriate name for such
an operation in C++. Notice that the common but rather lame
get prefix convention is avoided in naming size and capacity.
This prefixing convention is over-applied by many programmers,
with the typical effect of making their code look like a form of
high-level assembler. Joshua Bloch intentionally avoided this style
in the design of much of the Java Collections API 4, favouring the
clearer and more direct adjective style for queries about properties.

There is some inconsistency in Java over what to call the size
or length query: arrays use a length field; strings use a length method;
collections use a size method. As a RecentlyUsedList represents
a collection, it makes sense to adopt size. The most related notion
to an upper limit is the capacity method found in Vector,
which also has the virtue of being a concise name. There is
little contention or uncertainty in naming the clear method, which
is the conventional form used in Java and other languages.

If a recently used list is in some ways like a queue or a stack,
common received wisdom suggests that push is the most likely
candidate name for the insertion operation. Java’s Stack class
does indeed use push, but this legacy class is a little bit of a
design mess – for example, its inappropriate inheritance from Vector
– so it is not necessarily the best example to cite. The signature of

APP DEV WORKSHOP

Stack’s push is also slightly different, returning the newly inserted
element rather than void. Not a terribly useful or common
feature, so one that has been omitted in RecentlyUsedList.

A recently used list is not much use if it is a write-only
collection: you need to get your hands on the contents if you want
to be able to display them. Although drawn from the legacy Vector
interface, the elementAt name has the virtue of being clear in its
intent. The alternative name, found in the Java Collections
API, is the terser and somewhat less intentional get.

Another alternative, again from the Java Collections API,
would be to rename push as add. This name is less specific
because it is supposed to apply to any Collection implementation,
so add is a more neutral term than push for an interface that can
be implemented as a sequence or a set. The following is an
alternative interface that strikes a slightly different balance
between conciseness, consistency and the conventional:

interface RecentlyUsedList

{

boolean isEmpty();

int size();

int capacity();

void clear();

void add(String newHead);

String get(int index);

...

}

If RecentlyUsedList were to be integrated into the Collection
hierarchy, and generalised to handle Object not just String, this
would be the preferred form. However, the form presented first
is more specific and a little clearer in its intent, given the current
scope of the type’s design.

In either case, it is just worth noting that the integer index to
elementAt or get would count from zero and not one. This may
seem obvious, because Java is a zero-based language for array and
collection indexing, but some programmers may be tempted to
start from one because the display presentation of recently used
lists is almost always one based. The representation within the
program should follow the conventions of the language – zero
counting – and should not be coupled to the presentation logic
– one counting.

OK, so these are the considerations that go into expressing the
interface in Java. How about C# or C++? And what about
consistency and completeness within an interface? More on these
questions next time. ■

References
1. Butler W Lampson, “Hints for computer system design”,

Operating Systems Review, October 1983.
2. Kevlin Henney, “Sorted”, Application Development Advisor,

July 2003.
3. Bertrand Meyer, Object-Oriented Software Construction,

2nd edition, Prentice Hall, 1997.
4. Joshua Bloch, Effective Java, Addison-Wesley, 2001.

APP DEV WORKSHOP

